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CONSPECTUS: Chemists routinely work with complex molecular
systems: solutions, biochemical molecules, and amorphous and
composite materials provide some typical examples. The questions
one often asks are what are the driving forces for a chemical
phenomenon? How reasonable are our views of chemical systems in
terms of subunits, such as functional groups and individual molecules?
How can one quantify the difference in physicochemical properties of
functional units found in a different chemical environment? Are
various effects on functional units in molecular systems additive? Can
they be represented by pairwise potentials? Are there effects that
cannot be represented in a simple picture of pairwise interactions?
How can we obtain quantitative values for these effects?
Many of these questions can be formulated in the language of many-
body effects. They quantify the properties of subunits (fragments), referred to as one-body properties, pairwise interactions (two-
body properties), couplings of two-body interactions described by three-body properties, and so on. By introducing the notion of
fragments in the framework of quantum chemistry, one obtains two immense benefits: (a) chemists can finally relate to quantum
chemistry, which now speaks their language, by discussing chemically interesting subunits and their interactions and (b)
calculations become much faster due to a reduced computational scaling. For instance, the somewhat academic sounding
question of the importance of three-body effects in water clusters is actually another way of asking how two hydrogen bonds
affect each other, when they involve three water molecules. One aspect of this is the many-body charge transfer (CT), because
the charge transfers in the two hydrogen bonds are coupled to each other (not independent).
In this work, we provide a generalized view on the use of many-body expansions in fragment-based methods, focusing on the
general aspects of the property expansion and a contraction of a many-body expansion in a formally two-body series, as
exemplified in the development of the fragment molecular orbital (FMO) method. Fragment-based methods have been very
successful in delivering the properties of fragments, as well as the fragment interactions, providing insights into complex chemical
processes in large molecular systems. We briefly review geometry optimizations performed with fragment-based methods and
present an efficient geometry optimization method based on the combination of FMO with molecular mechanics (MM), applied
to the complex of a subunit of protein kinase 2 (CK2) with a ligand. FMO results are discussed in comparison with experimental
and MM-optimized structures.

1. INTRODUCTION

Many molecular systems have a large number of atoms, for
example, proteins, DNA, nanomaterials, etc. Whether truncated
models provide an adequate representation of them is always a
big question, necessitating an analysis of convergence with
respect to increasing the model size.1 Important chemical
properties in many cases strongly depend on the truncation
level. For instance, by extracting the active center of a protein−
ligand complex, one alters the long-range electrostatic environ-
ment, which can exhibit a strong influence on the binding.
Another problem is solvent effects. In a truncated model,
treatment of solvent can be very unrealistic, and mechanistic
and dynamic properties of large systems can be strongly

influenced by truncation. Likewise, using small models of
nanomaterials can result in very different electronic properties
because of the quantum confinement effect,2 among other
causes. An alternative of using periodic boundary conditions for
materials that are not periodic can bring about profound effects
related to improper symmetry and concentration of compo-
nents (because of using small elementary cells).
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Therefore, it is necessary to develop accurate and efficient
methods capable of treating large molecular systems. Tradi-
tional force fields in the molecular mechanics (MM) framework
have been highly tuned in terms of both computational
efficiency3 and accuracy, especially for systems composed of
standard building blocks, such as proteins made of amino acid
residues. The development of new force fields is an active area
of research, and the distinct trend for this development is to
heavily rely on quantum-chemical (QM) calculations.4

In order to improve the accuracy of force fields and deal with
the breaking and creation of chemical bonds, an interface of
QM and MM has been developed, which can be done with a
mechanical embedding in the integrated molecular orbital
(MO) molecular mechanics (IMOMM)5,6 or an electrostatic
embedding, QM/MM.7 A generalization of IMOMM, our own
N-layer integrated molecular orbital molecular mechanics
(ONIOM) methodology,8,9 is also available.10

Another route toward a more accurate treatment of large
systems is given by fragment-based methods,4 which have a
long history and are becoming increasingly popular.11−25 There
is also a continuous effort to develop linear scaling26,27

semiempirical approaches28,29 and other approaches.30

In the fragment molecular orbital (FMO) method,31−35 a
molecular system is divided into fragments, which are
calculated using an ab initio QM method in the presence of
the embedding electrostatic potential (ESP). Using ESP
derived from converged fragment densities, fragment pair
(dimer) and, optionally, fragment triple (trimer) calculations
are performed.
Any molecular study in QM relies on molecular geometry.

Apart from MD simulations, where the dynamic effects on the
structure are investigated, a typical QM study deals with
obtaining stationary points (energy minima and transition
states) and evaluating properties for them. Optimizing
structures of large systems is a major challenge, because they
are often flexible and require many hundreds or thousands of
single point gradient calculations. There is some progress in
applying traditional36 as well as novel37−40 and fragment-based
algorithms14,23,41−43 for QM-based optimizations of structures.
An alternative is to perform QM calculations using the
structures obtained with other methods, for instance, MM-
optimized structures.
Using the analytic gradient44,45 has enabled optimization of

polypeptides and very small proteins46 as well as radical
systems,47 in FMO. To improve the efficiency, it has been
proposed to save computational efforts by focusing on a part of
the system in the partial48 and frozen domain49 methods, later
also adopted for effective FMO (EFMO).50−53 An implemen-
tation of QM/MM where QM is described by FMO has been
developed.54 Recently, transition state search with FMO has
become possible, and some chemical reactions have been
studied with FMO.55,56

By these methods, the structures of chignolin (PDB
1UAO),46,57 Trp-cage protein construct (PDB 1L2Y),46,58

crambin (PDB 1CRN),59 silicon nanowire,60 boron nitride
nanoribbons,61 and polymer radicals62 have been optimized
using FMO. The present state is that full geometry
optimizations of relatively rigid inorganic systems, requiring a
manageable number of optimization steps, are possible for
systems of considerable size, as exemplified by an optimization
of BN nanoribbons containing 7878 atoms. However, very
flexible biological systems such as proteins or water clusters can
only be realistically treated when the number of optimized

atoms is on the order of several hundred or less. A practical way
is resort to partial optimizations, that is, freezing the
coordinates of the larger part of atoms, in which case one
can handle large systems, as demonstrated in the partial
optimization of the protein−ligand complex consisting of
19471 atoms.49 Other alternatives to sampling the configura-
tional space are given by Monte Carlo63 or genetic64

algorithms.
In the Methodology section, we summarize and generalize

the applications of the many-body property expansion in
fragment-based methods. Extending an earlier work,46 we
enable a covalent boundary between MO and MM regions in
the FMO-based IMOMM method (FMO/MM) and apply it to
the optimization of a protein−ligand complex.

2. METHODOLOGY

In 1970, a many-body expansion of the interaction potential
was proposed,65 and in 1977, it was suggested66 to use a similar
expression in the framework of a subsystem-based method. In
1992, the same idea was used to define the correlation energy
based on contributions of groups of localized orbitals67 and
another usage of it was made to define the FMO energy in
1999.31 Although these expressions look rather alike, there is a
considerable difference in the physical picture. In the original
FMO,31 the following expression is used to define the energy of
a system divided into N fragments,

∑ ∑= + − −
>

E E E E E( )
I

N

I
I J

N

IJ I J
FMO2

(1)

where EI and EIJ are the energies of fragments I and their pairs
IJ, respectively. The essential feature of FMO2 is the
incorporation of many-body effects in the expression, which
is formally limited to two-body contributions. This is
accomplished by the self-consistent treatment of the fragment
polarization, so that the electrostatic effects are treated at the
full N-body level, as shown numerically in the pair interaction
energy decomposition analysis (PIEDA).68 One can also see
that every subsystem energy in eq 1 includes N-body effects
because the energies are computed in the electrostatic field of
all fragments, thus their electrostatic coupling at the level of N-
body terms is accounted for. The self-consistent polarization
loop used in FMO and other methods13 is necessary to
incorporate many-body polarization. In FMO, only quantum
effects such as charge transfer and exchange-repulsion are
truncated at the two-body level. A diagrammatic representation
of FMO clearly showed the details of counting many-body
contributions.69

The SCF energies, which appear in eq 1, include the
interaction energy with the embedding potential. It was
suggested70 in 2002 to separate this interaction for two
purposes: (a) a better interaction picture, in which explicit
many-body effects are separated and (b) introduction of
approximations. The modified expression, which is entirely
equivalent to eq 1 provided that no approximations are used, is

∑ ∑= ′ + ′ − ′ − ′ + Δ
>

E E E E E D V[( ) Tr( )]
I

N

I
I J

N

IJ I J
IJ IJFMO2

(2)

Here, the internal energies EX′ of monomers X = I and dimers X
= IJ are
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′ = −E E D VTr( )X X
X X

(3)

where DX and VX are the electron density and embedding ESP
of X, respectively. ΔDIJ = DIJ − (DI ⊕ DJ) is the density
difference matrix describing the interfragment charge (density)
transfer in dimer IJ.
There are two main approximations70 applicable to eq 2. The

first is the separated dimer approximation (ES-DIM), in which
the energy of the separated dimer IJ is approximated for
fragments sufficiently separated from each other as the sum of
the two monomer energies plus the electrostatic (ES)
interaction between the monomers,

′ = ′ + ′ + ΔE E E EIJ I J IJ
ES

(4)

The other is the approximation of ESP, composed of the
potentials VX(I) of individual fragments I acting on X

∑=
≠

V VX

I X

N
X I( )

(5)

In the ES-PTC approximation, VX(I) for fragments I far
separated from X is computed using atomic charges rather than
electron density. The original expression in eq 1, as can be
inferred also from the diagrammatic treatment,69 cannot be
used for introducing either of these approximations, because of
the double counting of the electrostatics (the ES-DIM
approximation) and misbalance71 of the approximations in
monomer and dimer ESPs (the ES-PTC approximation). One
can rewrite eq 1 using combinatorics in terms of monomer and
dimer energies as

∑ ∑= − +
>

E N E E(2 )
I

N

I
I J

N

IJ
FMO2

(6)

but this expression is only useful without approximations;
otherwise it is misleading and its use should be avoided.
Reiterating, eqs 1, 2, and 6 representing FMO2 are only
equivalent when no approximations are employed; and
otherwise only eq 2 is appropriate.
In addition to reducing the effective scaling because the

number of SCF dimers scales linearly with N when the ES-DIM
approximation is used, eq 2 separates explicit many-body
effects. Namely, the M-body effects (M > 2) in FMO2 appear
because of the embedding potentials, and the SCF energies EX
in eq 1 include them. However, in eq 2, internal energies are
used, which reflect the implicit (impl) many-body effects,
whereas explicit (expl) many-body effects are now separated.
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(7)

EFMO2, impl describes the internal energy contribution and
reflects many-body polarization effects on the two-body
interactions. The explicit many-body effects are given by the
EFMO2,expl term, which is the energy cost to accomplish
interfragment charge (density) transfer, ΔDIJ, under the
influence of the embedding potential, VIJ, for fragments
polarized by ESP. In other words, it quantifies whether

surrounding charge distributions of fragments other than I
and J (in ESP VIJ) promote or demote the charge transfer
between I and J in dimer IJ. The charge transfer energy has two
contributions, one described by EFMO2,expl and the other is a
fraction of EFMO2, impl.
The energy decomposition analysis (EDA)72 was developed

in 1976. Its incorporation into FMO in the form of PIEDA
provides further insights into the physical picture of FMO. A
simple energy expansion in eq 1, when applied to the energies
of isolated fragments and their pairs (without the embedding
potential), can be thought of as a purely two-body truncation of
the many-body interaction.65 Its accuracy may be good for
nonpolar systems but is not very satisfactory in the case of polar
fragments, for instance, water.73 By introduction of the
electrostatic embedding, it is possible to bring many-body
effects into the expression, which is formally two-body (eq 1).
PIEDA clearly shows that the electrostatics and polarization in
FMO are the same as in the full EDA, applied to the system of
N fragments.74 It is the exchange-repulsion and charge-transfer
effects that are truncated at the two-body level in FMO2.
Thus, FMO may be viewed as a truncation of EDA, with a

high-order treatment of the electrostatic effects. Although this
preferential treatment of the electrostatics may be seen as a
distinct improvement, because the electrostatic effects are long-
ranged and very important in polar systems, the lack of the
high-order exchange-repulsion and charge transfer becomes a
serious problem either when large basis sets are used75 or when
charge transfer is large, for instance, in the case of metal ions.76

Adding the exchange potential77,78 to the ESP (which usually
only has Coulomb terms) does not seem to improve the
accuracy in general.
The only consistent way to improve the accuracy is to use

three-69 or four-body79 expansions. A number of other
fragment-based methods have also chosen to incorporate
them in one way or another.14,16,19,22,24,80−86 Many-body
effects of QM nature are very important in the systems with
extensive hydrogen bonding, in particular, in water.87−91 FMO2
lacks many-body quantum effects as revealed by PIEDA,68

which is why FMO2 shows some errors in water clusters.69

Note that the actual errors reflect to some extent the effect of
error cancellation due to various factors: for instance, in FMO2,
when point charges are used to describe ESP, the errors are
very considerably reduced75 because the point charge treatment
introduces errors that favorably cancel to a large extent the
errors due to neglected many-body quantum effects. The
importance of many-body effects for protein folding has been
stressed,92 as well as the importance of charge polarization.93

The many-body expansion of properties is not limited to the
energy. In a more general form, a property can be written in
an M-body expansion as

∑= + Δ
=

M

m

M
m1

2 (8)

where the properties I of N subsystems (fragments) are
summed in the one-body total property,

∑=
=I

N

I
1

1 (9)

and the m-body corrections are
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For instance,

Δ = − −IJ IJ I J (11)

Δ = − − − − Δ − Δ

− Δ
IJK IJK I J K IJ IK

JK (12)

and so on. These can be written in a general recursive form as

∑ ∑Δ = − − Δ
= =

−

I I I I
i

m

I
i

m

I... ...
1 2

1

{ }m m i i1 1
(13)

where Δ I{ }i
is the sum of the i-body terms Δ I I... i1

involving
all unique combinations of sets I1...Ii.
Because the contributions in eq 8 usually decrease in

magnitude with the many-body level (i.e., typically,
|Δ | < |Δ |−m m 1 ) there is no need to compute all m-body
contributions in eq 8 at the same level of theory, although the
combination of theories should be compatible (i.e., mixing
different levels of treating the electron correlation). Similar
ideas have been used in the context of computing the electron
correlation with localized orbitals.94 For fragment-based
methods, there any multilayer formulations of FMO95 and
other methods,96 some of which explicitly use different levels of
theory for many-body corrections.97

It can be noted that the expansion in eq 8 resembles at least
formally, a perturbation expression, where one defines a zero-
order level as the sum I of all monomer properties, to which
higher-order corrections are added. It was argued77 that FMO
can be viewed as a perturbation theory, based on the Green’s
function formalism. On the other hand, symmetry-adapted
perturbation theory98 has been applied to analyze interactions
in a variety of systems.
Because FMOM includes N-body effects (where N is the

number of fragments), for its energy in eq 2 one cannot
designate such a single to recast eq 2 in the form of eq 8. It
is possible instead to use

= +E M M MFMO (14)

where and correspond to EFMO2, impl and EFMO2, expl,
respectively. For completeness, the FMO3 equation is given
below, and it can be seen that it also features a combination of
two properties.

∑
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where

Δ ′ = ′ − Δ ′ − Δ ′

Δ ≡ − ⊕ ⊕

E E E E

D D D D D( )

IJ IJ I J

IJK IJK I J K
(16)

Naturally, two questions arise: (a) what physical conditions
should be satisfied in order to make the expansion in eq 8 valid

and (b) does the expansion converge and how quickly?
Although a general answer to neither of these questions is
attempted to be given here, as a comment pertaining to the first
question, it appears that the property should be size-
extensive in the usually accepted sense that the property of a
system AB can be written as a sum of A and B, if there is no
interaction between them.

= +(AB) (A) (B) (17)

Clearly, not all properties satisfy this criterion. If is the
energy of a method, which is not size-extensive, for instance,
the energy of configuration interaction with singles and doubles
(CISD), then one cannot use this expansion. Therefore, one
cannot expect that FMOM-CISD (M > 1) should be useful in
general to obtain the total CISD energy. Fortunately, many QM
methods are size-extensive. However, even for a size-extensive
QM method the expansion of cannot be used, if is not
the energy but some other property that does not satisfy eq 17.
For instance, if is the intensity of a transition between states
1 and 2 under the influence of an operator Â such as dipole
moment,

≈ |⟨ | ̂| ⟩|A1 2 2
(18)

then it does not appear to be possible to expand this property
in eq 8. Another example of a property that is difficult to
decompose into many-body contributions is the polarization
with a nonlinear coupling.
There is considerable experience built in FMO69,76 and other

methods,24 which shows by actual examples although not in any
way by a general proof that the properties of molecular systems
do converge and do so very quickly. In fact, even one-body
methods are already useful,13 and three and higher order
methods very often have negligible errors, whereas two-body
methods typically but not always have a satisfactory accuracy.
Many fragment-based methods impose a fixed integer

electron count on fragments and their pairs, although there
are some schemes that allow fractional occupations.12,99

Because it is a restriction, it was suggested68 to use the values
of the interfragment charge transfer as a measure of the
accuracy, although partly because of possible fortuitous error
cancellations the criterion is by no means decisively reliable. In
terms of convergence, it should be noted that the expansion in
eq 8 possesses the following important property by
construction

=N
I I... N1 (19)

In other words, for the full series extended to N-body terms, the
property is determined by the single value computed for the
whole system, I I... N1

(all other lower-body terms cancel out).
In other words, when a system is divided into N-fragments,
then the N-body expansion of the property is always exact, and
an M-body truncation for M < N is in general approximate. A
number of different properties have been expanded in FMO in
the series in eq 8. A representative summary is given in Table 1.
Finally, we turn to the physical importance and practical use

of the many-body corrections, such as those defined in eqs 11
and 12. First of all, a division of a system into fragments is
subjective and is typically based on convenience of further
discussion rather than on well-defined mathematical principles.
Frequently, the fragment definition is done in such a way as to
try to minimize the fragmentation error εM.
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ε = −M M N (20)

The definition of the error may include taking its absolute
value, although the sign is often kept to see in which way the
error is biased. Most but not all100 fragment-based methods are
not fully variational, and thus it cannot be expected that the
error in the energy is always positive. In fact, in FMO2 it is
typically negative, because of the neglected many-body
exchange-repulsion. Typically, the fragmentation strategy
reflects a compromise between computational cost (larger
fragments take more time), convenience of the result analysis,
and accuracy.
The fragment properties are influenced not only by the

fragment size but also by the details of the method such as the
treatment of fragment boundaries.57 In the framework of FMO,
a few studies deal with the properties of fragments I , such as
the polarization energy101 or the excitation energy.102 Most
applications of FMO focus on pair corrections (pair interaction
energies, PIE) in eq 11, which in FMO are usually defined as

Δ = ′ − ′ − ′ + ΔE E E E D V( ) Tr( )IJ IJ I J
IJ IJPIE

(21)

Although formally two-body, they also include explicit many-
body effects in the last term in eq 21.
Three- and four-body corrections can be added103 to eq 12 in

an averaged way to modify the pair interactions in what we call
mean-averaged generalized PIE (MAGPIE). Such division is
rather formal and divides the many-body corrections in an
equal way, which is not physical in general. However, we
recognize that in the case when FMO2 does not provide
desirable accuracy, it is not appropriate to limit the discussion
of interactions to two-body PIEs, and if a discussion involving
three-body terms is not practical, MAGPIE may be a useful
alternative. Generalizing MAGPIE for a general property ,
produces

∑ ∑Δ ′ = Δ + Δ + Δ +
≠ >

≠

1
3

1
6

...IJ IJ
K I J

N

IJK
K L

K L I J

N

IJKL
,

, ,

(22)

The coefficient of 1/3 (1/6) appears because a trimer
(tetramer) includes 3 (6) unique dimers, and the many-body
corrections, Δ IJK (Δ IJKL), are equally divided among all
dimers. The main justification for using effective two-body
corrections, Δ ′IJ , in place of Δ IJ is to compensate for the
insufficient accuracy of the latter, which can occur because of a
large basis set or the use of small fragments, for instance, side

chains in amino acid residues.103 With the aid of eq 22, eq 8 can
be written in a formally two-body way as

∑= + Δ ′
>

M

I J

N

IJ
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where
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= > >
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m
1 2
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(24)

and Cm
2 is the binomial coefficient.

Just like there are different atomic charge definitions based
on dividing the electron density into atoms, with Mulliken
charges using an equal division of the contributions belonging
to two atoms, it is conceivable although not clearly advanta-
geous to generalize the definition of the effective pair
corrections in eq 22 in the following way,

∑ ∑Δ ′ = Δ + Δ
= > >

≠
−

−

−
A aIJ IJ

m

M

IJ
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I I

I J I I

N
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, ...
m

m

m
1 2

1 2

1 2

(25)

For equal partitioning in eq 22, the coefficients aIJ
m are

independent of fragment indices IJ.

=a C1/IJ
m

m
2

(26)

It can be argued though that this is unphysical. Consider a
trimer IJK such that fragments I and J are close to each other
and strongly interact whereas the third fragment K interacts
with I and J weakly. According to the equal partitioning recipe,
all three effective pair interactions IJ, IK, and JK include the
same contribution of Δ /3IJK , whereas one can argue that it is
mainly due to IJ. A somewhat similar argument was made in the
definition of the interfragment charge transfer in PIEDA,
related to the division of charges on the fragment boundary.68

An even more general definition is

∑ ∑Δ ′ = Δ + Δ
= > >

≠
−

−

− −
a( )IJ IJ

m

M

I I

I J I I
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IJ I I IJ I I
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where one could partition pair corrections for an m-mer, based
on the pair contributions in it as

=
|Δ |

∑ |Δ |>
∈

aIJ I I
IJ

K L
K L I I

N
KL

, ...

, ...

m

m

1

1 (28)

The connection between the definitions in eqs 26 and 28 is
easy to see by assuming that all |ΔAIJ| are nonzero and equal to
each other and noticing that the number of independent pairs
in the sum appearing in the denominator of eq 28 is Cm

2. If all
|Δ |IJ = 0 (the limit of noninteracting fragments), then one has
to use eq 26.
To improve the reliability of pair interactions, it was

suggested to add basis set superposition error corrections104,105

or to do calculations in the complete basis set limit.106 An
analysis of pair interactions in FMO was used in quantitative
structure−activity relationship (QSAR) studies.107 There are
also a number of ways to perform the analysis, either in terms

Table 1. Properties Expanded in the Many-Body Series in
FMO

property expansion order refs

energy 2, 3, 4 31, 69, 79
energy gradient 2, 3 44, 45, 119
Hessian 2 55
electron density 2 120
multipole moments 2, 3 69, 121
atomic charges 2, 3 122
dynamic polarizabilities 2 123
solvent potential 2, 3 124
molecular electrostatic potential 2 125
Fock matrix 2, 3 78, 126
chemical shifts 2 127
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of total PIEs or with PIEs decomposed into EDA-like
contributions of electrostatic (ES), exchange-repulsion (EX),
charge transfer plus mixed terms (CT+mix), and dispersion
(DI) to which recently solvent screening (SOLV)108 and
thermal fluctuations109 were added. For instance, in PIEDA
with polarizable continuum model (PCM)108 the pair
interaction in solution is defined as

Δ = Δ + Δ + Δ + Δ

+ Δ

+E E E E E

E

IJ IJ IJ IJ IJ

IJ

PIE/PCM ES EX CT mix DI

SOLV
(29)

To gain more insights, it is useful to decompose PIEs into
orbital contributions, associated with individual functional
groups, which is done in the configuration analysis for fragment
interaction (CAFI)110 and the fragment interaction analysis
based on local MP2 (FILM).111 Among properties other than
the energy, one can name the interfragment charge transfer68

based on the density matrix difference ΔDIJ, fragment charges
and dielectric constants in solution,108 and atomic charges.

3. OPTIMIZATIONS OF PROTEIN−LIGAND
COMPLEXES WITH FMO/MM

Prior to this work, only MO calculations in IMOMM as
implemented in GAMESS112/Tinker113 interface were paral-
lelized (note that GAMESS uses a somewhat old sequential
version of Tinker adapted for it). This is not a big problem for
typical IMOMM calculations, because MM is fast and MO is
slow. However, MO calculations done with FMO are fast114

and compatible in computational cost with MM on medium-
sized or large computer clusters. Therefore, we parallelized MM
in Tinker: the charge−charge interaction energy and its first
derivative (echarge1 module) and the van der Waals energy and
its first derivatives (elj1 module) were parallelized, which were
found to constitute the main computational bottlenecks for our
simulations.
In this work, we extend FMO/MM46,115 by introducing link

atoms (usually hydrogens) at the boundary between FMO and
MM regions.6 There are no FMO-specific changes to the
treatment of link atoms, and the general recipe is used.6 We cap
dangling bonds with hydrogen atoms, and use them in fragment
calculations. The total energy E and its gradient are divided into
FMO and MM contributions,

= +E E ER R R( ) ( , )FMO 1 MM 1 2 (30)
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where R1 and R2 are a set of atomic coordinates in the FMO
region and atomic coordinates in the MM region, respectively.
Note that the interaction energy between FMO and MM atoms
is included in EMM and the link atoms in FMO region do not
feel MM forces.
The following procedure is applied for a geometry

optimization: Step 1, provide initial coordinates. Step 2,
optimize MM atoms with FMO atoms frozen and compute
∂EMM/∂R1 and EMM. Step 3, compute EFMO and ∂EFMO/∂R1.
Step 4, compute the energy E and its energy gradient ∂E/∂R1.
Step 5, if ∂E/∂R1 is not small enough, update the geometry of
FMO atoms and return to step 2.

Test calculations were performed on the complex of α
subunit of protein kinase 2 (CK2) with its ligand (Figure 1). In

this complex various kinds of molecular interactions are
involved: a salt bridge, NH···N, CH···O, and CH···π hydrogen
bonds, and π···π stacking. The interactions vary from strong to
weak, and a well balanced description of them is needed to get
a good geometry. The experimental structure (PDB 3AT3) was
used to construct the model system; hydrogen atoms were
added assuming standard protonation states, and the complex
was immersed in a solvating water shell of 6 Å.
Geometry optimizations were performed with the con-

vergence threshold OPTTOL set to 5.0 × 10−4 au for FMO
and 0.01 kcal/(mol·Å) for MM atoms. The protein in FMO
was divided as one residue per fragment, and the ligand was
treated as one fragment. The hybrid orbital projection operator
was used for treating fragment boundaries.116 We used FMO2
at the RHF-D/6-31G level (D is the empiric dispersion).117

AMBER f99 (protein) and gaff (ligand) force fields and TIP3P
(water) were employed for MM. The FMO region was defined
to include the ligand and the amino acid residues and water
molecules separated by the unitless FMO distance70 of 2.0 from
the ligand. We optimized all FMO atoms (667) and 1980 MM
atoms. A single point calculation took about 36 min on the
Heian cluster (112 CPU cores of Xeon 3.0 GHz), and 470
FMO steps were required for convergence.

Figure 1. Solvated complex of CK2α and its ligand ((1-{6-[6-
(cyclopentylamino)-1H-indazol-1-yl]pyrazin-2-yl}-1H-pyrrol-3-yl)-
acetic acid). FMO atoms are colored in purple (ligand) and blue (the
binding pocket of the protein). MM atoms are shown as yellow
(optimized) and green (frozen) for the protein, and cyan (optimized)
and pink (frozen) for water.
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The optimized structure, in toto, is in good agreement with
experiment (rmsd is 0.49 Å). Some selected interatomic
distances between amino acid residues and ligand atoms are
shown in Figure 2. The ligand forms one salt bridge with the
NZ atom of Lys68 and two hydrogen bonds with the main
chain NH atoms of Val116 and Asp175, stabilizing the binding.
The position and relative orientation of these groups are almost
the same as in experiment: a small variation of distances (∼0.2
Å) is observed. One of the characteristic features of this ligand
binding is the CH···O hydrogen bond between the CH group
of the pyrazine ring of the ligand and the main chain O atom of
Glu114 and Val116. The typical CH···O distance is around 3.6
Å, and the relatively short bonding distances in the
experimental structure became even shorter after the geometry
optimization. It is plausible because there are multiple polar
interactions between the ligand and the hinge region allowing a
close contact.
The distances and arrangement of CH···π interactions

between the hydrophobic moieties of indazole and cyclohexane
ring agree well with experiment. The side chain of Leu45 is
found to back away from the ligand compared with experiment,
but the position of this residue is reasonable. A π···π interaction
is found between the pyrazine ring of ligand and the benzene
ring of Phe113. The two aromatic rings formed a T-shaped
conformation. The interaction distance between the two ring
centers (4.96 Å) is in agreement with experiment.
As shown in Figure 2, the FMO and MM structures show in

general somewhat similar deviations from experiment. How-
ever, the NH···N and CH···O hydrogen bonds between the
pyrazine moiety of the ligand and Val116 are not well described
by the force field. In this particular complex, multiple weak
interactions are reasonably described by both FMO/MM and
MM methods.

4. CONCLUSIONS
The many-body expansion of properties in fragment-based
methods is very useful. Not only does it allow a systematic way
to improve the accuracy by increasing the level of the many-
body expansion, but it also provides very useful information
about the interactions in large molecular systems, which can be
further enhanced with the additional analytic techniques.
Many fragment-based methods, which can be called

“chemical”, are based on the calculation of individual fragments
and the interactions between them, which appeals to chemists,

who like to operate with chemically well-defined subunits; for
such methods, the many-body analyses are in particular well
suited. An example is FMO, with many useful analyses and
applications heavily using the many-body expansion. The other
group can be called “physical”; in the first step, fragments are
computed, and in the second, their density is used in calculating
the energy of the whole system, often with a common Fermi
level for all fragments. An example is a variety of divide-and-
conquer methods.12,15,21 The latter category is better suited for
describing delocalized systems, and the former is useful in
analyzing properties of systems with some localization.
From the practical point of view, for most systems one can

apply various methods from both categories. Even delocalized
systems such as graphene118 and boron nitride nanoribbons61

have been successfully treated with chemical methods, although
the focus was on structure rather than the full electronic
properties. The choice of a method for actual applications is
made based on such considerations as the ease of use,
efficiency, and available features in computation software, as
well as the availability of graphical user interfaces for making
input files and visualizing the results.
In this work, we have summarized and generalized the

definition of many-body effects, including a general form for the
effective expressions, which provide a contraction of many-body
effects in a lower-body formalism. In other words, by using an
effective two-body expression, one can discuss complicated
many-body effects such as hydrogen bond coupling in a simple
two-body representation in the form of a correction to pair
interactions (for instance, as coupling corrections to individual
hydrogen bond energies). Up to now, these many-body effects
have been mainly discussed in terms of the energy, but clearly
they can also be considered for other properties as suggested
above.
We have developed the FMO/MM method for efficient

geometry optimizations of large molecular systems and applied
it to the CK2α−ligand complexes. The optimized structures are
in reasonable agreement with experiment. Hydrogen bonding
and CH···π interactions are important for protein−ligand
binding. In addition, other weak interactions such as π···π
stacking and CH···O bonding also play an important role,
determining the conformation and orientation of the ligand. It
is important to consider all interactions in a balanced manner to
perform geometry optimizations, and FMO/MM can be
expected to be a useful method.

Figure 2. Selected interatomic distances between amino acid residues and ligand atoms in the optimized structure. The left and right panels show the
top and side views of the binding site, respectively. For each distance between heavy atoms (Å), three numbers are given, corresponding to the
FMO/MM minimum, MM minimum, and experimental values, respectively.
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Significant progress in geometry optimizations of large
molecular systems has been achieved, driven both by the
methodological development and the steady growth in
computational hardware. There are common problems though,
such as the problem of finding the global minimum, and the
issue of having to sample the whole energy surface rather than a
single minimum. These problems are especially severe for very
flexible biological systems such as proteins, typically studied at
room temperature in solution. Thus, future development of
fragment-based methods should address these concerns for
more reliable simulations.
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